
1

Adaptive Strassen and ATLAS’s DGEMM: A Fast Square-Matrix Multiply for
Modern High-Performance Systems

Paolo D’Alberto
Department of Electrical and Computer Engineering

Carnegie Mellon University

Alexandru Nicolau
Department of Computer Science
University of California at Irvine

IEEE Member

Abstract— Strassen’s algorithm has practical perfor-
mance benefits for architectures with simple memory
hierarchies, because it trades computationally expen-
sive matrix multiplications (MM) with cheaper matrix
additions (MA). However, it presents no advantages
for high-performance architectures with deep memory
hierarchies, because MAs exploit limited data reuse.

We present an easy-to-use adaptive algorithm com-
bining Strassen’s recursion and high-tuned version of
ATLAS MM. In fact, we introduce a last step in the
ATLAS-installation process that determines whether
Strassen’s may achieve any speedup. We present a
recursive algorithm achieving up to 30% speed-up
versus ATLAS alone. We show experimental results
for 14 different systems.

I. INTRODUCTION

In the last 30 years, the complexity of modern
uniprocessor and, thus, multiprocessor systems is fol-
lowing accurately Moore’s law. That is, the number
of transistors per chip doubles every 18 months.
Unfortunately, the steady increase of complexity of
a processor does not always translate in a propor-
tional increase of the system performance. In fact,
the system-performance equation is the result of a
fine and complicated relation between the constituent
parts of a processor, the hardware component, and
the sequence of instructions of an application, the
software component.

This work has been support in part by NSF Contract Number
ACI 0204028. Contact the authors: pdalberto@ece.cmu.edu and
nicolau@ics.uci.edu.

In this work, we turn our attention to the software
component of the performance equation and, specif-
ically, to adaptive codes. In fact, adaptive codes
are an effective solution for an efficient utilization
of complex and always-changing architectures (e.g.,
[1], [2], [3]). In this paper, we focus on a single
but fundamental kernel in dense and parallel linear
algebra such as matrix multiply (MM) for matrices
stored in double precision [4], [5], [6], [7], [8], [9].

In practice, software packages such as LAPACK
[10] (or ScaLAPACK, LINPACK) are based on a
basic set of routines such as BLAS [11], [12], which,
in turn, is based on an efficient implementations of
the MM kernel. ATLAS [2] is a clear example of an
adaptive software package implementing BLAS. In
this work, we show how an adaptive implementation
of Strassen’s algorithm can further improve the per-
formance of even highly-tuned MM (e.g., ATLAS).

Strassen’s algorithm [13] is among the first ex-
amples of algorithm engineering: in fact, Strassen
discovered that the original recursive algorithm of
complexity O(n3) can be reorganized so that, at a re-
cursive step, one computationally expensive recursive
MM can be traded in for 18 cheaper matrix additions
(MA). As result, Strassen’s algorithm has noticeably
fewer operations O(nlog2 7) = O(n2.86). (Winograd’s
variant requires only 15 additions and, thus, it is more
efficient than Strassen’s algorithm by a constant.)

Experimentally, Strassen’s algorithm has found
validation by several authors [14], [15], [5], showing
the advantages of this new algorithm starting from

2

very small matrices or cross-over sizes.1 With the
evolution of the architectures and the increase of the
problem sizes, the cross-over size started increasing
[17]. We now find projects and libraries implementing
different version of Strassen’s algorithm and consid-
ering its practical benefits [16], [18], [19], however
with larger and larger cross-over sizes and, thus,
undermining the practical use of Strassen’s algorithm.

None of the approaches previously proposed have
really attempted to determine if there can be an
automatic technique to determine whether or not such
a change of strategy is effective for a particular archi-
tecture. In this paper, we propose such an automatic
cross-over determination method and we embody our
ideas in the installation process of ATLAS so as to
combine the performance of tuned dense kernels –
at the low level– with Strassen’s recursive division
process –at the high level– into a single adaptive
algorithm. We present our experimental results for
14 systems where we tested our codes.

Our approach has four advantages over previous
approaches. First, our algorithm works for any square
matrices; that is, we do not need to pad the original
matrices so as to have even-size or, worse, power-
of-two matrices [13]. Second, the algorithm has no
requirements on the matrix layout, thus, it can be
used instead of other MM routines (ATLAS) with
no modifications or extra overhead to change the
data layout (unlike the method proposed in [19]).
In fact, we assume that the matrices are stored in
row-major format and, at any time, we can yield
control to a highly tuned MM such as ATLAS’s
dgemm() without any overhead. Third, the recur-
sive division produces balanced subproblems, thus,
predictable performance; unlike the division process
proposed by Huss-Lederma et al. [16] where for odd-
matrix sizes, they divide the problem into a large
even-size problem, on which Strassen can be applied,
and a small, and extremely irregular, computation.
Fourth, we propose a recursive algorithm that, if the
problem size is large enough, can unfold the division
process as deep as there is a performance advantage

1Also recursion truncation point [16], the cross-over size is
the matrix size n1 for which Strassen’s algorithm yields to the
original MM. Thus, for a problem of size n = n1, Strassen’s
algorithm has the same performance of the original algorithm,
and, for every matrix size n ≥ n1, Strassen’s algorithm is faster
than the original algorithm.

(in contrast to [16]), thus, the cross-over point is
determined empirically by micro-benchmarking at
installation time (differently as in [19]).

The paper is organized as follows. In Section II, we
present a generalization of Strassen’s algorithm better
suited for adaptation. In section III, we present our
technique for switching adaptively from/to different
algorithm strategies. In Section IV, we present our
experimental results. Finally, in Section V, we present
our concluding remarks.

II. STRASSEN’S ALGORITHM FOR ANY

SQUARE-MATRIX SIZES

In this section, we show that Strassen’s MM al-
gorithm can be generalized quite naturally and more
efficiently than previous implementations available in
the literature [13], [16], [19] so that it can be applied
to any square-matrix size.

0 1

2 3

C

C C

C C

0 1

2 3

A

A A

AA

0 1

2 3

B

B

B B

B

= *

Fig. 1
LOGICAL DECOMPOSITION OF MATRICES IN SUB-MATRICES

We identify the size of a matrix A ∈ Mm×n as
σ(A) = m× n, where m is the number of rows and
n the number of columns of the matrix A. Notice
that matrices C, A and B in the MM computation
are composed by four balanced sub-matrices in an
identical fashion (see Figure 1).

Now consider the operand matrix A with σ(A) =
n× n, then A is logically composed by four near-
square matrices, that is, every matrix has number of
rows r and number of columns c that differ by at most
one, i.e., |r − c| ≤ 1, [9]. In fact, we have A0 with
σ(A0) = dn

2 e × dn
2 e, A1 with σ(A1) = dn

2 e × bn
2 c,

A2 with σ(A2) = bn
2 c× dn

2 e and A3 with σ(A3) =
bn

2 c × bn
2 c.

The classical MM of C = AB can be expressed
as the multiplication of the sub-matrices as follows:
C0 = A0B0 + A1B2, C1 = A0B1 + A1B3, C2 =
A2B0 +A3B2 and C3 = A2B1 +A3B3. The com-
putation is divided in four basic computations, one for
each sub-matrix composing C. Thus, for every matrix
Ci (0 ≤ i ≤ 3), the classical approach computes

3

two products, for a total of 8 MMs and 4 MAs.
Notice that every product is the MM of near-square
matrices and it computes a result that has the same
size and shape of the sub-matrix destination Ci. If we
decide to compute the products recursively, that is,
each product is divided in further four subproblems,
then the matrices involved in the subcomputations
are near-square matrices and the computation applies
unchanged [9].

Strassen proposed to trade MAs in place of MMs
so as to reduce the number of subproblems. He
proposed to divide the MM into only 7 MMs and
18 matrix additions/subtractions. When the matrices
have power-of-two sizes, n = 2k, all multiplications
and additions are among square matrices of the same
sizes even if the computation is recursively carried
on. This is Strassen’s original formulation. We adapt
Strassen’s algorithm so as to compute the MM for
every square-matrix size as follows:

C0 = M1 + M4 −M5 + M7 C1 = M2 + M4

C2 = M3 + M5 C3 = M1 + M3 −M2 + M6

And every Mi is defined as follow:

M1 = T0T1 T0 = A0 + A3 and T1 = B0 + B3

σ(T0) = σ(T1) = σ(M1) = dne × dne
M2 = T2B0 T2 = A2 + A3

σ(T2) = σ(M2) = bnc × dne
M3 = A0T3 T3 = B1 + B3

σ(T3) = σ(M3) = dne × bnc
M4 = A3T4 T4 = B2 −B0

σ(T4) = σ(M4) = bnc × dne
M5 = T5B3 T5 = A0 + A1

σ(M5) = σ(T5) = dne × bnc
M6 = T6T7 T6 = A2 −A0 and T7 = B0 + B1

σ(M6) = σ(T6) = σ(T7) = dne × dne
M7 = T8T9 T8 = A1 −A3 and T9 = B2 + B3

σ(T8) = dne × bnc, σ(T9) = bnc × dne
σ(M7) = dne × dne

To reduce the total number of multiplications, the
algorithm computes some artificial products that are
not necessary for the final result. For example, the
product A0B0, which is a term of M1, is a necessary
product and it is required for the computation of C0;
in contrast, A0B3 is an artificial product, computed
in the same expression, and it must be reduced by
combining MAs (e.g., M1 + M4).

We notice that the matrices Ai, Bi and Ci are

near-square matrices but MAs and MMs are not
well defined; that is, the algorithm is left with the
addition of matrices that may have different num-
ber of rows/columns such as in T0 = A0 + A3,
or MM where the left-operand column number is
different from the right-operand row number, such
as in A3(B2 −B0).

In the following, we present our generalization of
the matrix computations achieving a correct algo-
rithm for any matrix sizes. First, we generalize ma-
trix addition. Intuitively, when the resulting matrix
X is larger than the addenda Y or Z, the computation
is performed as if the matrix operands are extended
and padded with zeros. Otherwise, if the result matrix
is smaller than the operands, the computation is
performed as if the matrix operands are cropped to fit
the result matrix. Formally, X = Y+Z is defined so
that σ(X) = m×n, σ(Y) = p× q and σ(Z) = r×s
and xi,j = f(i, j) + g(i, j) where

f(i, j) =

{
yi,j if 0 ≤ i < p ∧ 0 ≤ j < q

0 otherwise

g(i, j) =

{
zi,j if 0 ≤ i < r ∧ 0 ≤ j < s

0 otherwise

Second, we generalize matrix multiplication as
follows: X = Y ∗Z where σ(X) = m× n, σ(Y) =
m×q and σ(Z) = r×n so as xi,j =

∑min(q,r)
k=0 yi,k ∗

zk,j .
Both MA and MM introduce negligible overhead.

In fact, the matrices involved in the computations
are always near-square matrices, thus their sizes may
differ by at most one. Such a litte size difference
introduces negligible extra control for the matrix
sizes tested in this work.2 We explain how the two
approaches, that is, our version of Strassen’s and
tuned ATLAS routines are combined in Section III.

In exact arithmetic, this algorithm is correct be-
cause we are able to annihilate all components of the
artificial terms and therefore M1 + M4 −M5 + M7

= A0B0 + A1B2, M2 + M4 = A0B1 + A1B3,
M3+M5 = A2B0+A3B2, and M1+M3−M2+M6

= A2B1 +A3B3. Thus, this property can be applied
recursively on the products composing the terms

2Furthermore, we use the highly tuned ATLAS dgemm() to
reduce further the effects on the overall performance.

4

Mi. In the case of non-exact arithmetic, Strassen’s
algorithm has been proved weakly stable; that is,
Brent and Higham independently, and 20 years apart,
[14], [5] show that the difference between the real
result C and the one obtained by Strassen, Ċ, is as
it follows:

‖C− Ċ‖ ≤ [(
n

n1
)log 12(n2

1 + 5n1)− 5n]u‖A‖‖B‖
(1)

where ‖A‖ = maxij |aij |, n1 is the size where
Strassen’s algorithm yields to the usual MM, and
u is the inherent floating point precision. This is a
weaker error bound than the one for the usual MM.
As Highman noticed in his original work, the stability
of the algorithm is worsening as the depth of the
recursion increases. Fortunately, as we shall see in
Section IV, the practical unfolding of Strassen is no
larger than three; that is, n1 = n/8 and, thus, the
error is simply ‖C− Ċ‖ ≤ 27n2u‖A‖‖B‖+O(u2).

In the literature, divers authors have discussed the
benefits of a recursive layout for the matrices in
such a way to improve data reuse in cache or block
transfer among different cache levels in the memory
hierarchy (e.g., [20], [19], [9]). In our algorithm, we
do not follow this approach for the following four
reasons. First, in modern architectures, the memory
hierarchy has available (4+ way) associative caches
for which the effects of cache interferences, due
to the matrix layout, is relatively minimal. Second,
Strassen’s algorithm for the computation of the MA
allocates a smaller working space, dynamically and
arbitrarily, where the resulting matrices are stored,
so the effect of interference can be reduced further.
Third, we have noticed that the data layout may
improve the MM performance (i.e., making it faster)
for large problem sizes, however it does not improve
the MA kernels. Thus, interestingly, Strassen’s al-
gorithm may have a smaller cross-over size when
the operands are stored using a row/column-major
format instead of a non-standard format, such as Z-
Morton (we shall discuss this topic in more detail in
Section III). This means that Strassen’s algorithm has
practical effect for smaller cross-over sizes for MM
when the operands are stored in row-major format.
Fourth and last, non-standard layout complicates the
development of correct and efficient leaf-computation
routines for any square matrices; in fact, these leaf
routines must be tailored to the type of layout.

The simplicity of our code in conjunction with
the performance improvements achievable make our
approach a good strategy addition to the already
widely used software packages such as ATLAS,
especially for large problems. We also reorganized
the original Strassen’s computation so as to use only
three temporary matrices, as already proposed in the
literature [16].

III. CROSS-OVER SIZE: EMPIRICAL

CONSIDERATIONS

In this section, we propose a technique for deter-
mining when the algorithm’s strategy must change
so as to stop Strassen’s and to yield control to the
regular MM. In other words, we consider the problem
of when to have a recursive call (to Strassen’s MM)
or a call to an highly tuned dgemm (e.g., such as the
one offered by ATLAS). We show that the optimal
strategy is a function of the problem size and of the
underlying system.

Strassen’s algorithm embodies different locality
properties because its two basic computations exploit
different data locality: MM has spatial and temporal
locality, and MA has only spatial locality. In fact,
consider that the matrix operands fit a cache level,
for example L2, but do not fit the lower cache,3

such as L1. Note that the MA does not exploit data
locality at the lower levels of cache and, actually,
data accesses to/from the CPU during the MA will
flush previous contents. In fact, MA have little data
reuse and, thus, data-access latency time cannot be
circumvented or hidden; for this kernel, a memory hi-
erarchy actually slows down the overall performance.
In contrast, highly tuned MMs exploit temporal and
spatial locality at every level of cache, thus, having
fast memory accesses and fast computations. In a
hierarchical memory system, the two computations
may have drastically different performance. Thus,
Strassen’s algorithm has a performance edge over
the regular MM only when the saving in MMs, is
higher (in execution time) than the cost of the extra
additions.

In the literature, we find different and, often con-
tradicting, experimental results about the cross-over
size. In fact, a few authors have found that for any
problem size Strassen’s (or Winograd’s variation) is

3We use the order proposed by the authors in [21]

5

TABLE I

System Processors π−1 α−1 n1 exp. ṅ1 Figure
×106 ×106

Fujitsu HAL 300 SPARC64 100MHz 177 10 390 400 Fig. 2
RX1600 Itanium 2@1.0GHz 3023 105 487 725 Fig. 3
ES40 Alpha ev67 4@667MHz 1240 41 665 700 Fig. 4
RP5470 8600 PA-RISC 550MHz 763 21 772 1175 Fig. 5
Ultra 5 UltraSparc2 300MHz 407 9 984 1225 Fig. 6
ProLiant DL140 Xeon 2@3.2GHz 2395 53 995 1175 Fig. 7
ProLiant DL145 Opteron 2@2.2GHz 3888 93 918 1175 Fig. 8
Ultra-250 UltraSparc2 2@300MHz 492 10 1061 1300 No
Sun-Fire-V210 UltraSparc3 1GHz 1140 22 1140 1150 Fig. 9
Sun Blade UltraSparc2 500MHz 460 8 1191 1884 No
ASUS AthlonXP 2800+ 2GHz 2160 39 1218 1300 Fig. 10
Unknown server Itanium 2@700MHz 2132 27 1737 2150 Fig. 11
Fosa Pentium III 800MHz 420 4 2009 N/A No
SGI O2 MIPS 12K 300MHz 320 2 2816 N/A No

always faster; a few authors have found that the
cross-over size is about 500 for some systems and
implementations; and a few others, citing private
communications, claim that the cross-over size is
larger than 1000 [15], [17], [5], [16], [19].

In the following, we present our approach to de-
termine the cross-over size. In practice, our imple-
mentation requires 22 matrix updates (4 copies and
18 additions) and 7 recursive calls. Thus, a tentative
cross-over size is the size for which the work of the
22 MAs is equal to the one (avoided) of a single
MM: 2(m

2)3 = 22(m
2)2, that is m = 22. This cross-

over estimation is based on a bottom up approach and
is not really accurate. In fact, as the matrix size in-
creases, the MAs (at the higher levels of the division
process) are more expensive because they involve
data stored in slower levels of the memory hierarchy
with no reuse in the levels below. In practice, a more
precise analysis would suggest to stop recursion at
level ` ≥ 1 so that

max
`>0

`−1∑
k=0

(
7
4
)k[

n

2k+1
π n

2k+1
− 11α n

2k
] (2)

where πm is the efficiency coefficient for MM for
matrices of size m × m and αm is for MA. Notice
that π−1

m and α−1
m are the performance of MM and

MA represented as FLOPS.

That is, ` is the number of times we perform the
division of the problem, or function unfolding, and
for which the difference between the cost of saved
multiplications and the cost of the extra additions
is maximum. In practice, to save enough multiplica-
tions, we need to handle large n, but then the matrix
will lie on slow memories and, therefore, small α are
common. If we assume that π and α are constant,
we can use the simplified formula: n > 11α

π 2`.
Moreover, If we assume a ratio α/π = 50 (i.e.,
common for the systems adopted in this work when
the matrices lie in memory only), we find that the
cross-over size is n1 > 1100. Thus, for problems of
size smaller than n1, Strassen’s algorithm should be
avoided; for problems of size (`)n1 ≤ n < (`+1)n1,
we may apply Strassen’s ` times.

Of course, the ratio π/α is machine and problem-
size dependent, however it is straightforward to de-
termine, even if tedious and time consuming. In fact,
the factors π and α are easy to estimate by bench-
marking and they summarize, clearly and concisely,
the characteristics of the underlying architecture so
as to easily adapt the algorithm to the ever changing
system.

IV. EXPERIMENTAL RESULTS

We installed our codes and the software package
ATLAS on 14 different architectures, Table I. Once

6

the installation is finished, we measure α and π, and
we determine the cross-over size n1 = 22π

α . We
then determined experimentally the cross-over size
ṅ1 based on a simple linear search. The two cross-
over sizes may differ as we shall discuss shortly.

We determined the factor π and α by measuring the
performance of ATLAS dgemm() and our MA for
matrices of size 1000× 1000. Though in practice, π
represents the performance of MM and α represents
the performance of MA in isolation, however, these
routines interact and share data with other routines.
Because MM exploits data locality, our measure of π
is a lower bound of the effective π̇, and because MA
exploits little data locality, our α is an upper bound
of the effective α̇. Hence, the experimental cross-over
size ṅ1 is always larger than the estimated n1.

In this section, we present two measures of perfor-
mance (Figure 2 - 11): relative execution time over
ATLAS and relative MFLOPS for ATLAS dgemm
over peak performance. In fact, the execution time
is what any final user cares comparing two different
algorithms. However, a measure of performance for
ATLAS, such as MFLOPS, shows whether or not
Strassen’s algorithm improves the performance of
a MM kernel that is either efficiently or poorly
designed. This basic measure has been omitted in
previous investigations but we consider it important;
in fact, this measure shows the performance effects of
Strassen’s algorithm over the classic MM algorithm.

In the following, we present the experimental re-
sults for ten systems. We use the following terminol-
ogy: S-adaptive is the Strassen’s algorithm for which
the unfolding of the recursion is based on the param-
eter n1 = 22π

α ; S-k-unfold is the Strassen algorithm
for which k is the number of times the recursion
unfolds before yielding to ATLAS dgemm. (Note
that we did not report negative relative performance
and we omitted the correspondent bar in the charts.)
The performance obtained by the systems in Table
I, and presented from Figure 2 to Figure 11, are
obtained by the collection of the best performance
among several trials.

Though, six systems have two or more proces-
sors, however, our codes are single threaded and
we collected performance results using only one
processor at anytime. This is because most of the
multiprocessor systems used are a common resource
among different users making the system workload

unpredictable, thus, we decided to investigate the
more reproducible performance (of our codes) on
single processor.

V. CONCLUSIONS

We have presented a practical implementation of
Strassen’s algorithm, which applies an adaptive algo-
rithm to exploit highly tuned MMs, such as ATLAS’s.
We differ from previous approaches because we
use an adaptive recursive algorithm with a balanced
division process, which, in turn, makes the algorithm
performance more predictable.

We have tested extensively the performance of our
approach on 14 systems and we have shown that not
always Strassen is applicable. We have also shown
that for modern systems the cross-over size can be
quite large.

REFERENCES

[1] M. Frigo and S. Johnson, “The design and implementa-
tion of FFTW3,” Proceedings of the IEEE, special issue
on ”Program Generation, Optimization, and Adaptation,
vol. 93, no. 2, pp. 216–231, 2005.

[2] J. Demmel, J. Dongarra, E. Eijkhout, E. Fuentes, E. Petitet,
V. Vuduc, R. Whaley, and K. Yelick, “Self-Adapting linear
algebra algorithms and software,” Proceedings of the IEEE,
special issue on ”Program Generation, Optimization, and
Adaptation”, vol. 93, no. 2, 2005.

[3] M. Püschel, J. M. F. Moura, J. Johnson, D. Padua,
M. Veloso, B. W. Singer, J. Xiong, F. Franchetti, A. Gačić,
Y. Voronenko, K. Chen, R. W. Johnson, and N. Rizzolo,
“SPIRAL: Code generation for DSP transforms,” Proceed-
ings of the IEEE, special issue on ”Program Generation,
Optimization, and Adaptation”, vol. 93, no. 2, 2005.

[4] D. Coppersmith and S. Winograd, “Matrix multiplication
via arithmetic progressions,” in Proceedings of the 19-th
annual ACM conference on Theory of computing, 1987, pp.
1–6.

[5] N. J. Higham, “Exploiting fast matrix multiplication within
the level 3 BLAS,” ACM Trans. Math. Softw., vol. 16, no. 4,
pp. 352–368, 1990.

[6] J. Frens and D. Wise, “Auto-Blocking matrix-multiplication
or tracking BLAS3 performance from source code,” Proc.
1997 ACM Symp. on Principles and Practice of Parallel
Programming, vol. 32, no. 7, pp. 206–216, July 1997.

[7] N. Eiron, M. Rodeh, and I. Steinwarts, “Matrix multiplica-
tion: a case study of algorithm engineering,” in Proceedings
WAE’98, Saarbru̇cken, Germany, Aug 1998.

[8] R. Whaley and J. Dongarra, “Automatically tuned linear
algebra software,” in Proceedings of the 1998 ACM/IEEE
conference on Supercomputing (CDROM). IEEE Computer
Society, 1998, pp. 1–27.

[9] G. Bilardi, P. D’Alberto, and A. Nicolau, “Fractal matrix
multiplication: a case study on portability of cache per-
formance,” in Workshop on Algorithm Engineering 2001,
Aarhus, Denmark, 2001.

7

Fig. 2
FUJITSU HAL 300.

Fig. 3
RX1600.

Fig. 4
ES40.

Fig. 5
RP5470.

Fig. 6
ULTRA 5.

Fig. 7
PROLIANT DL140-

8

Fig. 8
PROLIANT DL145.

Fig. 9
SUN-FIRE-V210.

Fig. 10
ASUS A7N8X.

Fig. 11
LINUX ITANIUM 2 700 MHZ.

[10] E. Anderson, Z. Bai, C. Bischof, J. D. J. Dongarra,
J. DuCroz, A. Greenbaum, S. Hammarling, A. McKenney,
S. Ostrouchov, and D. Sorensen, LAPACK User’ Guide,
Release 2.0, 2nd ed. SIAM, 1995.

[11] B. Kagstrom, P. Ling, and C. van Loan, “Algorithm 784:
GEMM-based level 3 BLAS: portability and optimiza-
tion issues,” ACM Transactions on Mathematical Software,
vol. 24, no. 3, pp. 303–316, Sept 1998.

[12] ——, “GEMM-based level 3 BLAS: high-performance
model implementations and performance evaluation bench-
mark,” ACM Transactions on Mathematical Software,
vol. 24, no. 3, pp. 268–302, Sept 1998.

[13] V. Strassen, “Gaussian elimination is not optimal.” Nu-
merische Mathematik, vol. 14, no. 3, pp. 354–356, 1969.

[14] R. P. Brent, “Error analysis of algorithms for matrix mul-
tiplication and triangular decomposition using Winograd’s
identity,” Numerische Mathematik, vol. 16, pp. 145–156,
1970.

[15] ——, “Algorithms for matrix multiplication,” Stanford Uni-
versity, Tech. Rep. TR-CS-70-157, Mar 1970.

[16] S. Huss-Lederman, E. Jacobson, A. Tsao, T. Turnbull, and
J. Johnson, “Implementation of Strassen’s algorithm for
matrix multiplication,” in Supercomputing ’96: Proceedings
of the 1996 ACM/IEEE conference on Supercomputing
(CDROM). ACM Press, 1996, p. 32.

[17] D. H. Bailey and H. R. P. Gerguson, “A Strassen-Newton
algorithm for high-speed parallelizable matrix inversion,” in
Supercomputing ’88: Proceedings of the 1988 ACM/IEEE
conference on Supercomputing. IEEE Computer Society
Press, 1988, pp. 419–424.

[18] J. Bilmes, K. Asanovic, C. Chin, and J. Demmel, “Op-
timizing matrix multiply using PHiPAC: a portable, high-
performance, Ansi C coding methodology,” in International
Conference on Supercomputing, July 1997.

[19] M. Thottethodi, S. Chatterjee, and A. Lebeck, “Tuning
Strassen’s matrix multiplication for memory efficiency.” in
Proc. Supercomputing, Orlando, FL, nov 1998.

[20] A. Aggarwal, A. Chandra, and M. Snir, “Hierarchical
memory with block transfer,” in 28th Annual Symposium on
Foundations of Computer Science, Los Angeles, California,
October 1987, pp. 204–216.

[21] A. Aggarwal, B. Alpern, A. Chandra, and M. Snir, “A
model for hierarchical memory,” in Proceedings of 19th
Annual ACM Symposium on the Theory of Computing, New
York, 1987, pp. 305–314.

	Introduction
	Strassen's Algorithm for any Square-Matrix Sizes
	Cross-Over Size: Empirical Considerations
	Experimental Results
	Conclusions
	References

